Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Small ; 18(15): e2108120, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35253372

RESUMO

InP quantum dots (QDs) have attracted much attention owing to their nontoxic properties and shown great potential in optoelectronic applications. Due to the surface defects and lattice mismatch, the interfacial structure of InP/ZnS QDs plays a significant role in their performance. Herein, the formation of In-S and Sx -In-P1-x interlayers through anion exchange at the shell-growth stage is revealed. More importantly, it is proposed that the composition of interface is dependent on the synergistic effect of halogen ions and shelling temperature. High shelling temperature contributes to the optical performance improvement resulting from the formation of interlayers, besides the thicker ZnS shell. Moreover, the effect relates to the halogen ions where I- presents more obvious enhancement than Br- and Cl- , owing to their different ability to coordinate with In dangling bonds, which are inclined to form In-S and Sx -In-P1-x bonds. Further, the anion exchange under I- -rich environment causes a blue-shift of emission wavelength with shelling temperature increasing, unobserved in a Cl- - or Br- -rich environment. It contributes to the preparation of highly efficient blue emissive InP/ZnS QDs with emission wavelength of 473 nm, photoluminescence quantum yield of ≈50% and full width at half maximum of 47 nm.


Assuntos
Pontos Quânticos , Halogênios , Pontos Quânticos/química , Sulfetos/química , Temperatura , Compostos de Zinco
2.
ACS Appl Mater Interfaces ; 14(9): 11758-11767, 2022 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-35196010

RESUMO

Symbolic classification is an approach of interpretable machine learning for building mathematical formulas that fit certain data sets. In this work, symbolic classification is used to establish the relationship between oxygen vacancy defect formation energy and structural features. We find a structural descriptor na(ra/Ena - rb), where na is the valence of the a-site ion, ra is the radius of the a-site ion, Ena is the electronegativity of the a-site ion, and rb is the radius of the b-site ion. It accelerates the screening of defect-free oxide perovskites in advance of density functional theory (DFT) calculations and experimental characterization. Our results demonstrate the potential of symbolic classification for accelerating the data-driven design and discovery of materials with improved properties.

3.
Small ; 18(1): e2103527, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34713966

RESUMO

Metal halide perovskite nanostructures have sparked intense research interest due to their excellent optical properties. In recent years, although the green and red perovskite light-emitting diodes (PeLEDs) have achieved a significant breakthrough with the external quantum efficiency exceeding 20%, the blue PeLEDs still suffer from inferior performance. Previous reviews about blue PeLEDs focus more on 2D/quasi-2D or 3D perovskite materials. To develop more stable and efficient blue PeLEDs, a systematic review of blue perovskite quantum dots (PQDs) is urgently demanded to clarify how PQDs evolve. In this review, the recent advances in blue PQDs involving mixed-halide, quantum-confined all-bromide, metal-doped and lead-free PQDs as well as their applications in PeLEDs are highlighted. Although several excellent PeLEDs based on these PQDs have been demonstrated, there are still many problems to be solved. A deep insight into the advantages and disadvantages of these four types of blue-emitting PQDs is provided. Then, their respective potential and issues for blue PeLEDs have been discussed. Finally, the challenges and outlook for efficient and stable blue PeLEDs based on PQDs are addressed.

4.
Adv Sci (Weinh) ; 9(4): e2103648, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34904393

RESUMO

Exploring lead-free candidates and improving efficiency and stability remain the obstacle of hybrid organic-inorganic perovskite-based devices commercialization. Traditional trial-and-error methods seriously restrict the discovery especially for large search space, complex crystal structure and multi-objective properties. Here, the authors propose a multi-step and multi-stage screening scheme to accelerate the discovery of hybrid organic-inorganic perovskites A2 BB'X6 from a large number of candidates through combining machine learning with high-throughput calculations for pursuing excellent efficiency and thermal stability in solar cells. Followed by a series of screenings, the structure-property relationships mapping A2 BB'X6 properties are built and the predictions are close to reported experimental results. Successfully, four experimental-feasibly candidates with good stability, high Debye temperature and suitable band gap are screened out and further verified by density-functional theory calculations, in which the predicted efficiency for three lead-free candidates ((CH3 NH3 )2 AgGaBr6 , (CH3 NH3 )2 AgInBr6 and (C2 NH6 )2 AgInBr6 ) achieves 20.6%, 19.9% and 27.6% due to ultrabroadband absorption region ranging from UVC to IRC with excitonic radiative combination rates as low as 10 ps, large or intermediate polarons form with properties similar to CH3 NH3 PbI3 and the calculated thermal conductivities are 5.04, 4.39 and 5.16 Wm-1 K-1 , respectively, with Debye temperatures larger than 500 K, beneficial for suppression of both nonradiative combination and heat-induced degradation.

5.
Nanomaterials (Basel) ; 11(12)2021 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-34947720

RESUMO

Luminescent copper nanoclusters (Cu NCs) have shown great potential in light-emitting devices (LEDs), chemical sensing, catalysis and biological fields. However, their practical use has been restricted by poor stability, and study on the stability of Cu NCs solid powder along with the mechanism is absent. In this study, stablized Cu NCs powder was first obtained by cation crosslinking method. Compared with the powder synthesized by solvent precipitation method, the stability of Cu NCs powder crosslinked by ionic inducer Ce3+ was enhanced around 100-fold. The storage time when the fluorescence intensity decreased to 85% (T85) was improved from 2 h to 216 h, which is the longest so far. The results of characterizations indicated that the aggregation structure was formed by the binding of Ce3+ with the capping ligands of Cu NCs, which helped in obtaining Ce-Cu NCs powder from aggregate precipitation in solution. Furthermore, this compact structure could avoid the destruction of ambient moisture resulting in long-lasting fluorescence and almost unchanged physical form. This demonstrated that phosphor, with excellent characteristics of unsophisticated synthesis, easy preservation and stable fluorescence, showed great potential in light sources, display technology and especially in latent fingerprints visualization on different substrates for forensic science.

6.
Sci Rep ; 11(1): 20433, 2021 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-34650139

RESUMO

The rotation of organic cations is considered to be an important reason for the dynamic changes in stability and photoelectric properties of organic perovskites. However, the specific effect of organic cations rotation on formamidine based perovskite is still unknown. In our work, first-principles calculations based on density functional theory are used to examine the effect of the rotation of formamidine cations in FAPbI3 and FA0.875Cs0.125PbI3. We have comprehensively calculated the structure, electronic and optical properties of them. We found a coupling effect between formamidine cations rotation and cesium atom. This coupling effect changes the inclination angle of octahedron to regulate electron distribution, band gaps, and optical absorption. Hence, changing the cation orientation and substitution atom is a feasible way to dynamically adjust the energy band, dielectric constant and absorption edge of perovskite. Preparing perovskite with tunable properties is just around the corner through this way.

7.
Adv Mater ; 33(30): e2101239, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34137091

RESUMO

Up to now, power supplies designed based on the electrochemical reaction principle have had unavoidable defects, in that a complete redox reaction must be formed inside the power supply to operate normally, which makes it unable to be reconstructed and regenerated. Hence, the design and interpretation of this self-powered and disintegration-reorganization-regeneration power supply are generally considered to be almost insurmountable obstacles to haunt both experimenters and theorists. Herein, a self-powered and disintegration-reorganization-regeneration power supply with relatively stable discharge for 8.3 h is realized by the principle of ion-selective diffusion, which regenerates by radical polymerization. Additionally, the mechanism is investigated systematically by molecular dynamics simulation, and this power supply with a variety of self-powered and disintegration-reorganization-regeneration units can discharge continuously at freezing temperatures and variable temperature (0-25 °C). As a hypothetical model, a self-powered and deformable arch bridge with disintegration and reorganization is fabricated. In the future, this power supply is expected to be applied in prosthetic limbs, bionic skins, implantable power supplies, mobile phones, portable computers, wearable devices, etc. Moreover, with the improvement of the stability and discharge life, it could promote major revolutionary breakthroughs in the fields of intelligent industrial automation, smart buildings, intelligent transportation systems, intelligent power systems, etc.

8.
J Colloid Interface Sci ; 602: 307-315, 2021 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-34130177

RESUMO

With the blooming development of zero-dimensional nanomaterials, I-III-VI alloying quantum dots (QDs) with outstanding photoelectrical properties have emerged to attract much attention as promising environmentally-friendly substitutions for conventional binary Cd-based QDs. In this work, a facile one-pot method was introduced to synthesize unreported quaternary Ag-Cu-Ga-Se/ZnSe (ACGSe/ZnSe) QDs. A relatively high photoluminescence quantum yield (PL QY) of 71.9% and a tunable emission from 510 to 620 nm were successfully achieved. We explored the roles of alloying compositions in ACGSe/ZnSe QDs, inferring that increased Ag proportion would not only lower the Vdefect level which leads to the blue shift of emission, but also slow the ZnSe shelling process owing to the larger lattice distortion. At last, the white light-emitting diodes (WLEDs) were fabricated with ACGSe/ZnSe QDs as the conversion layer, indicating that the as-prepared QDs are a promising candidate for further applications.

9.
Anal Methods ; 13(24): 2732, 2021 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-34114578

RESUMO

Correction for 'Gadolinium-doped carbon dots with high-performance in dual-modal molecular imaging' by Le Wang et al., Anal. Methods, 2021, 13, 2442-2449, DOI: 10.1039/d1ay00270h.

10.
Anal Methods ; 13(21): 2442-2449, 2021 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-33998611

RESUMO

Carbon dots (CDs), possessing unexpected advantages of photostability, biocompatibility and low toxicity, are regarded as novel nanomaterials in fluorescence (FL) imaging. Doping Gd element in CDs makes them have the ability to be used for magnetic resonance (MR) and FL imaging simultaneously. However, CDs reported before exhibit obvious defects like low photoluminescence (PL) quantum yield (QY) or biotoxicity. In this work, we use gadolinium meglumine, a material with relatively low biotoxicity, along with citric acid and diethylenetriamine to synthesize Gd-doped CDs (Gd-CDs) by a one-step hydrothermal method. The prepared Gd-CDs exhibit excitation-independent emission with a PL QY of 78.05% and a longitudinal relaxivity of 7.37 mM-1 S-1, which endows the composite with high-performance in MR/FL imaging. Meanwhile, the FL intensity of Gd-CDs remains stable in the presence of multiple amino acids, which indicates that the FL imaging effect should not be impacted significantly in microenvironments in vivo. In addition to the inconspicuous cytotoxicity, Gd-CDs could be used efficiently for dual-modal molecular imaging to detect diseases such as tumors in the early stages.


Assuntos
Gadolínio , Nanoestruturas , Carbono , Imagem Molecular , Imagem Óptica
11.
ACS Omega ; 6(17): 11537-11544, 2021 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-34056309

RESUMO

NaTi2(PO4)3 (NTP), a well-known anode material, could be used as a solid wide-band gap electrolyte. Herein, a novel solid-state sodium-ion battery (SSIB) with the thickness of electrolyte up to the millimeter level is proposed. The results of the difference in charge density investigated by the first-principles calculations imply that using the NTP nanocrystals as electrolytes to transport sodium ions is feasible. Moreover, the SSIB exhibits a high initial discharge capacity of 3250 mAh g-1 at the current density of 50 mA g-1. As compared with other previously reported SSIBs, our results are better than those reported and suggest that the NTP nanocrystals have potential application in SSIBs as solid electrolytes.

12.
Mikrochim Acta ; 187(12): 666, 2020 11 18.
Artigo em Inglês | MEDLINE | ID: mdl-33206253

RESUMO

Dipicolinic acid (DPA) is employed as a significant biomarker to detect Bacillus anthracis, which can do serious damages to the health of human beings. Hence, it is crucial to develop a fast and highly efficient strategy for DPA monitoring. In this work, based on silicon nanoparticles (Si NPs) and terbium metal-organic frameworks (Tb-MOFs), a hybrid structure (Si NPs/Tb-MOFs) as a novel dual-emitting fluorescence probe was fabricated for ratiometric detection of DPA, where blue light-emitting Si NPs (Ex: 280 nm; Em: 422 nm) are encapsulated into green light-emitting Tb-MOFs (Ex: 280 nm; Em: 547 nm). The optical properties and chemical composition of the as-obtained Si NPs/Tb-MOFs were characterized in detail. The Si NPs/Tb-MOFs probe not merely possesses the merits of a facile synthesis method but also is an excellent fluorescence probe. The response time towards DPA is less than 30 s, revealing that the process of detecting DPA can be completed in such a short time. The limit of detection for DPA is 5.3 nM, which is four orders of magnitude lower than an infectious dosage of anthrax spores for human beings (60 µM). This dual-emitting Si NPs/Tb-MOFs probe with interference-free and self-calibrating properties may be a potential candidate for further development in medical diagnosis. Graphical abstract.


Assuntos
Estruturas Metalorgânicas/química , Nanopartículas/química , Ácidos Picolínicos/análise , Silício/química , Espectrometria de Fluorescência/métodos , Esporos Bacterianos/metabolismo , Bacillus anthracis/fisiologia , Biomarcadores/análise , Corantes Fluorescentes/química , Concentração de Íons de Hidrogênio , Limite de Detecção , Térbio/química
13.
Light Sci Appl ; 9: 162, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33014357

RESUMO

Optoelectronic devices for light or spectral signal detection are desired for use in a wide range of applications, including sensing, imaging, optical communications, and in situ characterization. However, existing photodetectors indicate only light intensities, whereas multiphotosensor spectrometers require at least a chip-level assembly and can generate redundant signals for applications that do not need detailed spectral information. Inspired by human visual and psychological light perceptions, the compression of spectral information into representative intensities and colours may simplify spectrum processing at the device level. Here, we propose a concept of spectrum projection using a bandgap-gradient semiconductor cell for intensity and colour perception. Bandgap-gradient perovskites, prepared by a halide-exchanging method via dipping in a solution, are developed as the photoactive layer of the cell. The fabricated cell produces two output signals: one shows linear responses to both photon energy and flux, while the other depends on only photon flux. Thus, by combining the two signals, the single device can project the monochromatic and broadband spectra into the total photon fluxes and average photon energies (i.e., intensities and hues), which are in good agreement with those obtained from a commercial photodetector and spectrometer. Under changing illumination in real time, the prepared device can instantaneously provide intensity and hue results. In addition, the flexibility and chemical/bio-sensing of the device via colour comparison are demonstrated. Therefore, this work shows a human visual-like method of spectrum projection and colour perception based on a single device, providing a paradigm for high-efficiency spectrum-processing applications.

14.
Langmuir ; 36(34): 10244-10250, 2020 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-32787042

RESUMO

Single-phased and dual-emissive nanocrystals with broad emission are attractive fluorescent materials for optoelectronic devices due to their unique properties. Until now, the effect of different metallic cations and inorganic anions on III-V group quantum dots (QDs) concerning luminescence features and crystalline growth has been less explored. In this work, dual-emissive InP/ZnS QDs single-doped with transition-metal compounds (Cu2+, Ag+, or Mn2+) are synthesized to compare their optical and morphological properties. The corresponding doping concentrations to realize dual emission with comparative intensity for Cu, Ag, and Mn are 0.8, 6, and 80%, which vary greatly and might be attributed to different precursor reactivities. As for the morphological and internal structures, transmission electron microscopy (TEM) images indicate that transition-metal ions have no obvious effect on the morphological properties and a higher concentration of chloride anions binding with an In-rich interface could conduce to a homogeneous distribution and triangular growth through the comparison of different metal chlorides as precursors. X-ray photoelectron spectroscopy (XPS) results further demonstrate that the high-resolution In 3d spectrum of Mn-doped InP/ZnS QDs with MnCl2 is mainly dominated by In-P bonds, indicating fewer intermediate chemical states. These results concerning well-defined InP/ZnS QDs could promote more diverse insight into surface chemistry and help to better understand the growth mechanism, thus making it possible to regulate InP/ZnS QDs into desired formats for different practical applications like white light-emitting diodes (LEDs).

15.
RSC Adv ; 10(29): 17266-17269, 2020 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-35521470

RESUMO

Cyan emissive sulfur dots with a record high photoluminescence (PL) quantum yield of 49.25% have been successfully prepared via a microwave-assisted top-down route. The PL enhancement induced by electrostatic repulsion of sulfite groups and steric hindrance of polyethylene glycol 400 (PEG-400) were investigated for the first time.

16.
Nanomaterials (Basel) ; 9(6)2019 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-31159346

RESUMO

All-inorganic CsPbX3 (X = Cl, Br, and I) perovskite quantum dots (QDs), an emerging type of luminescent materials, have drawn extensive attention in recent years. However, the amelioration of their stability is becoming a critical issue. Herein, we present a facile and efficient approach to prepare novel perovskite QDs/metal-organic frameworks (CsPbX3/ZIF-8) composites under ambient-atmospheric conditions. The obtained composites exhibit better properties including high photoluminescence (PL) quantum yields (QYs) (41.2% for green and 34.8% for red), narrow-band emission (20 nm for green and 31 nm for red), and enhanced stability in comparison to bare QDs. Furthermore, their application in a remote-type white-light-emitting device was explored and a wide color gamut (~137% of the National Television System Committee standard) was achieved, verifying that these novel luminescent composites have great prospect in backlight display application.

17.
Nanoscale Res Lett ; 14(1): 172, 2019 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-31127418

RESUMO

The tunable photoluminescence (PL) of nitrogen-doped carbon dots (NCDs) has attracted much attention in recent years while the specific mechanism is still in dispute. Herein, NCDs with yellow emission were successfully synthesized via a facile hydrothermal approach. Three kinds of post-treatment routes were investigated to verify the influence of surface states on the PL emission of NCDs including solvent-dependent, reduced-reaction and metal-enhanced effect. The interaction mechanism was studied by absorption spectrum, structural characterizations, steady-state and time-resolved spectroscopy. When dispersed in different solvents, the as-prepared NCDs show tunable emission and PL enhancement attributed to hydrogen bonding between solvents and NCDs. Besides, the addition of NaBH4 can induce the reduction of the C=O bonds existing in original NCDs to C-O bonds and thus result in the enhancement of the intrinsic (n-π*) emission. Moreover, metal-enhanced fluorescence of NCDs can also be observed when adding Ag+ into initial NCD solution, which might be ascribed to aggregation-induced emission enhancement. These results for post-treated NCDs demonstrate that surface functional groups are responsible for PL emission and provide new possibilities like multi-image sensing and lighting application.

18.
Nature ; 550(7674): 92-95, 2017 10 05.
Artigo em Inglês | MEDLINE | ID: mdl-28869967

RESUMO

Recent advances in the use of organic-inorganic hybrid perovskites for optoelectronics have been rapid, with reported power conversion efficiencies of up to 22 per cent for perovskite solar cells. Improvements in stability have also enabled testing over a timescale of thousands of hours. However, large-scale deployment of such cells will also require the ability to produce large-area, uniformly high-quality perovskite films. A key challenge is to overcome the substantial reduction in power conversion efficiency when a small device is scaled up: a reduction from over 20 per cent to about 10 per cent is found when a common aperture area of about 0.1 square centimetres is increased to more than 25 square centimetres. Here we report a new deposition route for methyl ammonium lead halide perovskite films that does not rely on use of a common solvent or vacuum: rather, it relies on the rapid conversion of amine complex precursors to perovskite films, followed by a pressure application step. The deposited perovskite films were free of pin-holes and highly uniform. Importantly, the new deposition approach can be performed in air at low temperatures, facilitating fabrication of large-area perovskite devices. We reached a certified power conversion efficiency of 12.1 per cent with an aperture area of 36.1 square centimetres for a mesoporous TiO2-based perovskite solar module architecture.

19.
Adv Mater ; 29(35)2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28707309

RESUMO

Large-scale high-quality perovskite thin films are crucial to produce high-performance perovskite solar cells. However, for perovskite films fabricated by solvent-rich processes, film uniformity can be prevented by convection during thermal evaporation of the solvent. Here, a scalable low-temperature soft-cover deposition (LT-SCD) method is presented, where the thermal convection-induced defects in perovskite films are eliminated through a strategy of surface tension relaxation. Compact, homogeneous, and convection-induced-defects-free perovskite films are obtained on an area of 12 cm2 , which enables a power conversion efficiency (PCE) of 15.5% on a solar cell with an area of 5 cm2 . This is the highest efficiency at this large cell area. A PCE of 15.3% is also obtained on a flexible perovskite solar cell deposited on the polyethylene terephthalate substrate owing to the advantage of presented low-temperature processing. Hence, the present LT-SCD technology provides a new non-spin-coating route to the deposition of large-area uniform perovskite films for both rigid and flexible perovskite devices.

20.
Nat Commun ; 8: 15330, 2017 06 12.
Artigo em Inglês | MEDLINE | ID: mdl-28604673

RESUMO

Long-term stability is crucial for the future application of perovskite solar cells, a promising low-cost photovoltaic technology that has rapidly advanced in the recent years. Here, we designed a nanostructured carbon layer to suppress the diffusion of ions/molecules within perovskite solar cells, an important degradation process in the device. Furthermore, this nanocarbon layer benefited the diffusion of electron charge carriers to enable a high-energy conversion efficiency. Finally, the efficiency on a perovskite solar cell with an aperture area of 1.02 cm2, after a thermal aging test at 85 °C for over 500 h, or light soaking for 1,000 h, was stable of over 15% during the entire test. The present diffusion engineering of ions/molecules and photo generated charges paves a way to realizing long-term stable and highly efficient perovskite solar cells.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...